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Abstract. Solving the Navier-Stokes equation for incompressible fluids is greatly simplified by the solution
of the vorticity equation. To accomplish this for three-dimensional flows requires vector potentials. These
potentials are not only useful to take care of the incompressibility. Their modes are suitable also as test
functions since the familiar Galerkin procedure does not work. The new method is checked by examples
with known results and its relation to the classical approach with the stream function is clarified. The
principle demonstration, however, concerns the transition to turbulence in plane shear flows. A simple
layer of long rolls with axes parallel to the basic flow incites the transition.

PACS. 47.20.Ft Instability of shear flows – 47.27.Cn Transition to turbulence – 47.11.+j Computational
methods in fluid dynamics

1 Introduction

Incompressible fluid flow is commonly described by the
Eulerian velocity field U(r, t) and the kinematic pres-
sure P (r, t). The equations of motion for these vector and
scalar fields are according to Euler, Navier, and Stokes

∂tU = −(U · ∇)U−∇P +Re−1∇2U, (1)
∇ ·U = 0. (2)

The second of these equations expresses the incompress-
ibility of the fluid. U is nondimensionalized by measuring
it in terms of a characteristic velocity U0, introduced by
the physical boundary conditions. P is measured in terms
of U2

0 . All lengths are given in terms of a characteristic
scale d0 of the boundary geometry and time in multiples
of d0U

−1
0 . Re−1, the inverse Reynolds number, is the kine-

matic viscosity ν0 nondimensionalized by dividing it by
d0U0.

Because of incompressibility the longitudinal compo-
nent of the velocity field remains constant in time. The
longitudinal part of the Navier-Stokes equation (1) serves
to determine the pressure as a solution of the Poisson
equation

∇2P = −∇ · (U · ∇)U. (3)

To solve it, one has to introduce Green’s function for the
geometry of interest, which is not easy for flows of physical
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or technical interest. Having formally eliminated the pres-
sure the main task remains, namely to solve the transverse
part of (1).

Alternatively to this strategy one may proceed in the
reverse order, namely first consider the transverse part
of (1). One then gets rid of the the pressure from the very
beginning. The curl of (1) leads to the vorticity equation
for an incompressible flow

∂tW = ∇× (U×W)− Re−1∇×∇×W. (4)

Here W = ∇×U denotes the vorticity field belonging to
the Euler velocity field U. The vorticity equation is not
a closed, selfcontained equation for W because U shows
up explicitly. This intrinsic difficulty is addressed in the
present paper. We offer and study a method to surmount
the occurence of both fields U and W in the vorticity
equation. It is the introduction of their common root, the
vector potential A, as well as the proper expansion of
these fields in terms of a known complete basis of modes,
whose coefficients have to be solved. These coefficients do
not distinguish between velocity and vorticity anymore.

The argument why the vorticity equation (4) is capa-
ble of determining the two fields W and U simultane-
ously runs as follows. Start at time t with a given velocity
field U. This simply by differentiation implies W = ∇×U
and thus the right-hand side of (4). By equation (4) one
then obtains the vorticity field W at the next time step,
i.e., one knows W = ∇ ×U together with ∇ ·U = 0 at
t+dt. Now, knowing the vortices (W) and sources (0) of a
field (U) together with its boundary conditions determines
the vector field U completely, according to a fundamental
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theorem of vector analysis, see textbooks, e.g. [1]. This
closes the circle: one can start once more at t+dt with U,
etc.

Having solved for U (and W) the pressure can be eval-
uated a posteriori by simple path integration

P (r, t) =P (r0, t) +
∫ r

r0

dr ·
[
− ∂tU− (U · ∇)U

+Re−1∇2U
]
· (5)

The integrand can be considered as known after solving
the vorticity equation (4). The path integral does not
depend on the choice of the path because the bracket
[. . . ] is, by the Navier-Stokes equation, a gradient, i.e.,
∇× [. . . ] = 0. In case of multiply connected flow domains
the well-known generalizations or regularizations of the
pressure integral (5) obtain. This completes solving the
flow-field equations for U and P .

Taking the vorticity equation (4) as the starting point
leads to several advantages. One avoids to deal with the
equation of motion for the longitudinal part, which seems
waste, because the longitudinal component of U cannot
move anyway. Therefore the computational labor doubles
at least if one does not separate the longitudinal and trans-
verse parts of (1).

Furthermore, without vorticity equation, the knowl-
edge is lost that the theory of complex functions is an
offspring of two-dimensional hydrodynamics. Namely one
of the Cauchy-Riemann equations ∇ × U = 0 is a first
integral of the vorticity equation for inviscid flows, while
the other Cauchy-Riemann equation ∇ ·U = 0 expresses
incompressibility. We next remind that in the theory of
three-dimensional non-viscous flows, the Bernoulli equa-
tion, being just the longitudinal part of the Navier-Stokes
equation without friction, is commonly used to calculate
the pressure a posteriori. Thus Bernoulli’s equation turns
out to be nothing but (5) in its restricted range of applica-
bility. Also for viscous fluids, the theory of linear stability
is dominated by the Orr-Sommerfeld equation, which is
just a linearization of the vorticity equation (4).

Orszag used the Orr-Sommerfeld equation to compute
the stability of plane Poiseuille flow [2]. But when it came
to the three-dimensional flow, nonlinearity included, he
and Kells switched to the Navier-Stokes equation and de-
signed special devices to cope with the pressure [3]. These
special devices did not satisfy other authors [4]. There is
now an awesome variety of methods to take the pressure
into account. To solve for the pressure is the most urgent
necessity if one starts from the Navier-Stokes equation and
is after its longitudinal component first.

As was explained the paper aims to elaborate on the
fluid flow solution by starting from the vorticity equa-
tion (4). It describes mathematical and numerical meth-
ods and demonstrates, why they are useful for physics,
beyond previously already obtained physical results. The
paper is organized as follows. We introduce stream func-
tions in three dimensions (Sect. 2), choose an appropriate
vector potential (Sect. 3) and a set of orthonormalized vec-
tor potential modes to form a proper basis, categorized by

their symmetry (Sect. 4). The next section (Sect. 5) is de-
voted to possible pitfalls by lack of completeness. We then
check the proposed methods to solve the vorticity equa-
tion by examples in the context of the onset of turbulence
(Sects. 6 and 7) and close (Sect. 8) by a warning to avoid
being disguided by Squire’s theorem: the important modes
for the onset of turbulence are three-dimensional ones, not
two-dimensional ones.

2 Stream functions in three dimensions

The vorticity equation (4) is very well known. Why was it
avoided? This might have to do with the change from 2 to
3 dimensions and with the meager knowledge on suitable
potentials.

The velocity field U in (4) must fulfil ∇·U = 0 a priori.
In two dimensions, say with coordinates x and y, this is in-
sured by using the stream function Ψ , defined by Ux = ∂yΨ
and Uy = −∂xΨ . Despite of several ansatzes, the analog of
the stream function in three dimensions does not seem to
be evident. However, a simple solution for incompressible
fluids can be based on a vector potential A [5] (cf. also [1];
further references on numerical methods using hydrody-
namic potentials in three dimensions are [6–8]).

U = ∇×A, A = va+∇× (vb), v = v0 + rv1. (6)

a and b are scalar functions, the amplitudes, depending
both on position r and time t, whereas the carrier field
v is a vector that must depend only on an arbitrary yet
fixed vector v0 plus some constant multiple v1 of the po-
sition r. Note that this holds for any geometry. In flow
geometries enjoying a special symmetry, like channel or
pipe flow, one chooses, of course, v0 to take proper care
of this symmetry in order to avoid a tedious coupling of
the amplitudes a, b by the boundary conditions. The ordi-
nary stream function Ψ , of course, is contained as a special
case, as the other potential-alikes used in hydrodynamics.
Even the scalar potential of inviscid hydrodynamics can
be extracted from (6), viz. from the double curl. Because
of ∇ ·U = 0 there are only two independent functions to
describe the motion, a and b, rather than the three com-
ponents of the velocity Ux, Uy, Uz and the pressure P .
We shall outline the theory and the construction of these
vector potentials in Sections 3 and 4.

There was one more reason to avoid the vorticity equa-
tion: The classic Galerkin method reducing the partial dif-
ferential equation (4) to a system of ordinary differential
equations does not safely yield accurate results. (A spec-
tral method to solve a PDE is denoted as Galerkin, if the
same basis is used to expand the field of interest as well
as (the terms in) the equation of motion, see e.g. [9].)
This can be understood as follows. If one takes a com-
plete basis of modes Uν and the corresponding functions
Wν = ∇×Uν to expand velocity and vorticity, the mul-
tiplication of (4) with W∗

µ (complex conjugate) and sub-
sequent integration over space may turn out (cf. Sect. 6)
to generate an incomplete set of equations. Multiplication
with U∗µ, on the other hand, and subsequent integration
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necessitates matrix inversion and may cause prohibitively
slow convergence with the number of modes although this
set of equations is complete. We shall show that just the
modes that come with the vector potential (6) provide
suitable multipliers, see Section 5.

Thus the vector potential (6) is crucial for a successful
application of the vorticity equation (4).

We emphasize this not so much for a purification of
scholarship, but rather to reach novel results. Clearly, it
is necessary to verify the new, more consistent method
by facts. We shall do this for known solutions of the
two-dimensional Orr-Sommerfeld equation in Section 6,
and will explain the historical roots of the new proce-
dure in Section 7. The novel result, however, will concern
the three-dimensional transition to turbulence in plane
Couette and Poiseuille flows. There is no linear instabil-
ity of plane Couette flow, but it becomes turbulent for
Re ≈ 350 [12]. Plane Poiseuille flow, by contrast, exhibits
an instability at Re = 5 772, but even at Re = 10 000
it is weak [2], whereas experimentally turbulence arises
already at Re ≈ 1 000 [13]. The onset is triggered by so-
called providers, which appear as lengthy rolls with axes
parallel to the basic flow, see Section 8.

3 Formulas for the vector potential

We must explain, first, why the ansatz for the vector po-
tential in equation (6) works for all transverse velocity
fields and, second, why it is useful.

To answer the first question: Because of the defini-
tion U = ∇ ×A the vector potential A can be replaced
by A +∇g without affecting the velocity U. The gauge
function g is arbitrary. Given a velocity field defined on
the whole, infinite space, one may use a formula derived
by Stokes and Helmholtz to compute the vector potential
in terms of the velocity field U,

A(r, t) +∇g(r, t) =
1

4π

∫
∞

∇′ ×U(r′, t)
|r− r′| d3r′. (7)

Insertion of A = va + ∇ × (vb) from (6) yields a three-
dimensional vector equation for the three scalar func-
tions a, b, g. Splitting it into components parallel or per-
pendicular to v, and elementary elimination permits sub-
sequent calculation of g, b, and a. So the special ansatz (6)
generally works because there is freedom of gauge.

Equation (7) is certainly a valid representation of the
vector potential of the velocity field in the infinite three-
dimensional space. Yet it also holds for the vector poten-
tial of a flow in finite geometry solving the correspond-
ing boundary-problem. We simply imagine the flow in the
finite volume to be properly continued into the infinite
space, e.g. by putting it zero there.

The second question is answered by analyzing the
mode system originating from the ansatz (6). Consider
a vector potential basis Aν as the starting set of modes.
This basis implies the velocity modes Uν = ∇ ×Aν , for
which the physical boundary conditions are requested. We

also wish orthonormality of the velocity modes, i.e., the
following conditions are chosen,

Uν = ∇×Aν , Uν |boundary = 0,∫
U∗µ ·Uν d3r = δµν . (8)

δµν denotes Kronecker’s symbol. In words: The velocity
modes must be derivable from vector potentials (which au-
tomatically guarantees the incompressibility of the flow),
must fulfil homogeneous boundary conditions, and must
be orthogonal. Inhomogeneous boundary conditions can
be taken care of by adding one inhomogenous mode to
the homogeneous ones. If orthogonality is missing, the
modes produce equations which are numerically unstable
or slowly convergent or both. We shall discuss an example
in Section 6.

From the postulated condition of orthogonality of the
Uν-modes there follows an even more decisive one∫

A∗µ ·Wν d3r = δµν (9)

between potentials and vorticities. This identity will turn
out to be so important that it is proven here: Remember
Wν = ∇×Uν , U∗µ = ∇×A∗µ, and use A∗µ · ∇ ×Uν =
Uν ·∇×A∗µ+∇·(Uν×A∗µ) being true for all differentiable
vector fields. In the application of Gauß’s theorem it is
utilized that Uν vanishes on the boundary.

For the actual construction of such modes we stipulate
an eigenvalue problem

α2
νWν = ∇×∇×Wν , (10)

which follows for the time-separated vorticity equation (4)
for Re → 0, i.e., in the Stokes limit. The solutions will
therefore be called Stokes modes. Just for later reference
we mention the analog of (10)

α2
νUν = Re∇Pν +∇×∇×Uν , (11)

which is directly derived from the Navier-Stokes equa-
tion (1). (11) contains the irksome pressure Pν which
must be eliminated using incompressibility. But it is in so
far more satisfactory as it is an equation for the velocity
modes, for which the boundary conditions (8) apply di-
rectly. However, both equations (10, 11) define the same
Stokes modes which are, as will be shown in the Appendix,
orthogonal and complete.

If one inserts the vector potential (6) into (10), two
partial differential equations for a and b are obtained(

∇2 + α2
n

)
a = 0, ∇2

(
∇2 + α2

n

)
b = 0. (12)

b can be represented as a sum, the terms of which satisfy(
∇2 + α2

n

)
b̃ = 0, ∇2b̂ = 0, with b = b̃+ b̂, (13)

([5], p. 17).
The general solutions of equations (12, 13) must be

inserted into (6) and their flexibility be used to fulfil the
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boundary conditions for every mode on its own. This be-
comes especially easy if the carrier field v is chosen to
be perpendicular to the boundaries. This principle conveys
that the ordinary stream function is usually not the best
choice, not even for two-dimensional flow problems.

Let us point out once more that only the conditions (8)
matter. Choosing the Stokes modes according to equa-
tion (10) is just convenient from the analytical point of
view, as all integrals can be calculated without numerics.
We prefer the Stokes modes also to make the present pro-
cedure comparable with classical work to be discussed in
Section 7.

4 Two symmetries of modes

The formulas just given shall be applied now to flows be-
tween plane, parallel walls at x = ±1. The walls are as-
sumed to be normal to the unit vector ex. Thus we set
v = ex, separate factors exp(i(kyy+ kzz)) and abbreviate

γn =
√
α2
n − β2, β =

√
k2
y + k2

z . (14)

z denotes the streamwise and y the spanwise directions,
kz and ky are the corresponding wave numbers.

The general solutions of equations (12, 13) are the po-
tential amplitudes a, b with even parity of the correspond-
ing velocity fields (6) with respect to the center plane

ae = −ifen cos γfenx,

b̃e = −ic̃en sin γcenx,

b̂e = −iĉen sinhβx. (15)

Similar formulas where cosines are replaced with sines and
vice versa represent the potentials with odd parity of the
corresponding velocity modes. To be brief, the amplitudes
fen, c̃en and ĉen include the factors exp(i(kyy+kzz)). The
wave numbers ky and kz are given, whereas the eigenvalues
α2
n are to be found from the boundary condition for the

velocity modes in equation (8). Insert the potentials into
equation (6) and find two classes of velocity modes, viz.

Ufen = (eykz − ezky)fen cos γfenx (16)

and

Ucen = ex
(
−iβ2

)
(c̃en sinγcenx+ ĉen sinhβx)

+ (eyky + ezkz)(c̃enγcen cos γcenx+ ĉenβ coshβx).
(17)

The Ufen are denoted in what follows as the flat modes;
their surfaces of constant velocity are the planes x =
const. The Ucen are called curved modes. Both have even
parity. All three Latin indices together, f or c for the
flat or curved, e or o for their parity even or odd, and
n = 1, 2, . . . build the compound index ν that was intro-
duced in equation (10). Generally, we denote compound
indices by Greek letters.

The vorticities appear as

Wfen = ex
(
−iβ2

)
fen cos γfenx

− (eyky + ezkz)fenγfen sinγfenx (18)

and

Wcen = (eykz − ezky)cenα2
cen sin γcenx. (19)

The advantage of the carrier field v = ex, which is
perpendicular to the walls, shows up in the ease by which
these two velocity classes are separated.

The boundary condition at x = ±1 for the flat modes
according to (16) leads to the eigenvalue equation

cos γfen = 0, i .e., γfen =
(
n− 1

2

)
π, n = 1, 2, . . . ,

(20)

whereas the eigenvalues for the curved modes are found,
according to (17), from the equation

β coshβ sin γcen − γcen sinhβ cos γcen = 0,

nπ < γcen <
(
n+ 1

2

)
π, n = 1, 2, . . . , (21)

which poses no hindrance against easy numerical solution.
The amplitudes follow from the boundary and normal-

ization conditions in equation (8)

fen =
exp(i(kyy + kzz))

β
, (22)

c̃en =
fen

αcen
√

1− sin(2γcen)/(2γcen)
,

ĉen = −c̃en
sin γcen
sinhβ

· (23)

As there exists a first dichotomy between flat and
curved modes, there is a second one between even and
odd modes. We call the modes defined by equations (15)
through (21) even because the velocities are even func-
tions. Remember that the unit vector ex, when reflected,
changes sign too. We prefer to depend with the definition
of what is even or odd on the velocities since they, rather
than potentials, are measurable.

The odd modes come with the following set of equa-
tions.
Potentials:

ao =− ifon sin γfonx,

b̃o =− ic̃on cos γconx,

b̂o =− iĉon coshβx. (24)

Velocities:

Ufo = (eykz − ezky)fon sin γfonx, (25)

Uco = ex
(
−iβ2

)
(c̃on cos γnx+ ĉon coshβx)

− (eyky + ezkz)(c̃onγcon sin γnx+ ĉonβ sinhβx).
(26)



U. Brosa and S. Grossmann: Hydrodynamic vector potentials 125

Vorticities:

Wfo = ex
(
−iβ2

)
fon sinγfonx

+ (eyky + ezkz) fonγfon cos γfonx, (27)

Wco = (eykz − ezky) conα2
con cos γconx. (28)

Eigenvalues:

sin γfon = 0, i .e., γfon = nπ, n = 1, 2, . . . , (29)
β sinβ cos γcon + γcon coshβ sin γcon = 0,(
n− 1

2

)
π < γcon < nπ, n = 1, 2, . . . . (30)

Amplitudes:

fon =
exp(i(kyy + kzz))

β
, (31)

c̃on =
fon

αcon
√

1 + sin(2γcon)/(2γcon)
,

ĉon = −c̃on
cos γcon
coshβ

· (32)

These formulas describe the mode sets Aν , Uν =
∇ × Aν , and Wν = ∇ × Uν = ∇ × ∇ × Aν in plane
geometry. The completeness of this set of potentials is
demonstrated in the Appendix.

5 Inapplicability of Galerkin’s method

The straightforward way to solve the vorticity equation (4)
is to insert the expansions for the velocity U and the vor-
ticity W

U(r, t) =
∞∑
ν=0

Uν(r) aν(t), W(r, t) =
∞∑
ν=0

Wν(r) aν(t),

(33)

with the now familiar relation Wν = ∇×Uν . The ampli-
tudes aν(t) should not be confounded with the potential
function a introduced in equation (6). Questions of con-
vergence are important, of course, for infinite sums. But
in practical use the expansions are finite.

If one multiplies equation (4) with W∗
µ as test func-

tions and integrates over the volume of the flow, one ob-
tains a system of ordinary differential equations∑

ν

∫
d3r W∗

µ ·Wν dtaν(t) = . . . , (34)

which gets simpler — and numerically stable — if the
vorticities are mutually orthogonal, as indeed they are: It
follows from (8) and (10), valid for the Stokes modes.

〈Wν |Wµ〉 = 〈∇ ×∇×Aν |Wµ〉 = 〈Aν |∇ ×∇×Wµ〉
= α2

µ〈Aν |Wµ〉 = α2
µδνµ. (35)

There are no boundary terms left in the partial integra-
tions if not only Uν but also Aν (by proper gauge of the
latter) vanish at the walls.

This is exactly Galerkin’s method generating ordinary
differential equations (ODEs) from the vorticity equation,
commonly defined as testing the dynamical equation with
the same modes (here the Wµ) as the field expansion
modes. The system of ODEs is solved by restricting it to
a finite number of modes. It unfortunately turns out that
this numerical solution has insufficient accuracy in the
case of using the Stokes modes Wµ. We emphasize that
insufficient performance of Galerkin’s method is known,
see e.g. [10], Example 1.3 and the explanation in Exam-
ple 6.3.

Of course, it is not the vorticity equation which fails.
It is the lack of completeness of the vorticity modes Wµ

which leads to the disappointing results. (That complete-
ness is an important issue in hydrodynamics too, is known
since long, see e.g. [11].) The error occurs because vortic-
ities are derivatives. Deriving destroys constant contribu-
tions in the complete basis of the Uµ’s. Therefore a part
of the vorticity equation is not tested, the set of ordinary
differential equations is not complete and the solutions to
some extent random.

Remember some simple examples of complete bases
which under differentiation lose completeness. Consider
the one-dimensional finite interval [0, π] and the Hilbert
space L2 of square integrable functions on it. The following
sets of orthogonal functions are complete Fourier bases:
(a) exp(i2nx) with n = 0,±1,±2, . . . ; (b) 1, cos(2nx),
sin(2nx) with n = 1, 2, . . . ; (c) sin(nx) with n = 1, 2, . . . ;
(d) 1, cos(nx) with n = 1, 2, . . . . The set of respective
derivatives in case (a) is incomplete because the constant
(n = 0) is missing now; the same happens in case (b). The
basis (c) leads to (d) but again without the constant. In
case (d) the derivative set happens to be complete, giving
the Fourier sine basis (c).

One might object that, as there is no constant con-
tribution in the physical vorticity field, no quasi-constant
test function is needed to filter it out. This is true if one
looks only on the left-hand side of the vorticity equa-
tion (4). Yet the right-hand side of (4) digests the velocity
field in a nonlinearity, which contains those constant con-
tributions.

To be more precise, one has to check the completeness
of the vorticity set {Wν} by proving that 〈Wν |R〉 = 0 for
all ν implies R(r) = 0 in the space of incompressible fields
with proper behavior on the boundaries. Partial integra-
tion and using the boundary condition (8) for the velocity
set {Uν} gives 〈Uν |∇ ×R〉 = 0 for all ν. Since {Uν} is
complete, we find ∇×R = 0. Yet this for finite geometry
does not mean that R is zero, i.e., the vorticity set is not
necessarily complete.

Analogously for an incompressible flow field U(r, t)
with ∇ ·U = 0 for all times t it is ∇ · ∂tU = 0. But still
the right-hand side of the Navier-Stokes equation says
∇(rhs) = 0 only, if the pressure P is properly chosen.
The vorticity equation also has a property which is easily
overlooked: The vorticity set {Wν} is complete for proper
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expansion of physical vorticity fields, but still the rhs
of the vorticity equation has an additional component,
which cannot be expanded in terms of the {Wν}. It is
the solution of

∇×R(r, t) = 0 for all t. (36)

The completeness of {Wν} for all vorticity fields follows
from W = ∇×U = ∇×

∑
ν Uνaν =

∑
ν Wνaν . The rhs

of (4) is incompressible, ∇ · (rhs) = 0 because the lhs is.
And it has a component R with zero vorticity which does
not contribute to ∂tW on the lhs. R thus has no sources,
∇ · R = 0, and no vortices, ∇ × R = 0. In an infinite
flow volume and the boundary condition R(∞) = 0 this
implies R = 0, but this is not so in finite geometry. It is
this R which is skipped if the ODEs are generated with the
{Wν} as test functions, thus omitting another condition
for the infinite set of amplitudes {aν(t)}.

This being understood, the next way to create ordinary
differential equations from the partial differential equa-
tion (4) is to test it with the velocity modes Uµ which are
(cf. Appendix) a complete basis.∑

ν

∫
d3r U∗µ ·Wν dtaν(t) = . . . . (37)

This variant yields better results than (34), but lack of
numerical efficiency kills it. Taking the Uµ as test modes
needs too many of them. Convergence is slow.

The reason is missing orthogonality between Uµ and
Wν . This does not come by accident. Usually it is ad-
vantageous to use velocity modes with defined parity, see
Section 4. Since vorticities and velocities are related by
curls, they have opposite parities. One therefore has to
use both, Uν of even and odd parity.

To the best of our knowledge, there is but one way to
attain both accuracy and efficiency. The expansions (33)
should be derived from a vector potential basis Aν(r),

A(r, t) =
∑
ν

Aν(r) aν(t), (38)

via U = ∇ × A. The potentials Aν provide proper test
functions for the vorticity equation (4)∑

ν

∫
d3r A∗µ ·Wν dtaν(t) = . . . . (39)

Moreover, since the potentials are orthonormal to the vor-
ticities, see (9), algebra is simplified and numerical stabil-
ity greatly supported.

Note, if one uses a complete set of vector potentials
{Aν} to describe the fluid flow, the derived set of velocity
fields {Uν |Uν = ∇×Aν} is not necessarily complete, by
the same argument as before for the set of vorticity fields.
I.e., one cannot cope with a velocity component Ru that
has neither sources nor vortices,

∇ ·Ru = 0, ∇×Ru = 0. (40)

But while these properties cannot be excluded for the rhs
of the vorticity equation, such physical velocity field with-
out sources and vorticities must be zero because of the

physical zero boundary conditions (8). There are no such
conditions for the rhs of the vorticity equation. Hence the
set {Uν} is complete for the physical velocity fields to-
gether with the completeness of the {Aν} for the vector
potentials. – We note that the approach to choose the
trial and the test functions from different spaces is often
referred to as the Petrov-Galerkin method.

6 Checking by known examples

The general ideas shall be elucidated by examples. We
discuss the linear stability of plane shear flows between
parallel walls. The basic laminar flow is taken as

U0(r) = ez
{
p
(
1− x2

)
+ (1− p)x

}
, −1 ≤ x ≤ 1,

(41)

i.e., a superposition of plane Poiseuille (p = 1) and plane
Couette (p = 0) flows. This definition entails the following
definition of the Reynolds number

Re = U0d0/ν0, (42)

U0 denoting the difference between the velocities at either
wall and the center, d0 the distance between a wall and
the center. The kinematic viscosity ν0 should not be
confused with the compound index ν. The Cartesian
coordinates x, y, z are chosen to let these plane flows
appear as similar as possible to Hagen-Poiseuille flow in
the pipe. The complete velocity is

U = U0 +
∞∑
ν=0

Uν aν(t), W = W0 +
∞∑
ν=0

Wν aν(t).

(43)

As in (33) all W are derived from the U by forming curls.
The difference is that here the basic flow is drawn out of
the sum. The ν-sum of velocity modes satisfies zero bound-
ary conditions at the walls, since U0 carries the physi-
cal boundary conditions. Furthermore the ν-sum collects
flat and curved as well as even and odd modes. It also
comprises the index n appearing in the eigenvalue equa-
tions (20, 21, 29, 30).

For the investigation of linear stability, the vorticity
equation (4) is linearized about the basic flow (41), and
time t is separated according to

aν(t) = eλt a0ν (44)

to obtain an eigenvalue equation for λ. So in (34, 37)
and (39), dtaν(t) should be replaced by λ a0ν .

A spectrum of eigenvalues calculated according to (34)
(i.e., with the W∗

µ as test functions) is shown by the cir-
cles in Figure 1 while the results based on (39) (with A∗µ
as the test functions) appear as dots. Certainly the true
eigenvalues of Poiseuille flow are those shown by dots since
they have been calculated also by fundamentally different
methods, e.g. [15,16,2]. The differences between circles
and dots are not breathtaking, but the circles annoy as
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Table 1. For plane Poiseuille flow at Re = 10 000, eigenvalues λr+iλi of the most unstable mode computed by left multiplication
with vector potentials A∗µ, velocities U∗µ, and vorticities W∗

µ; see text for details.

λr λi test functions mode count mode symmetries
0.00370 0.23750 A∗µ 32 odd, curved
0.00373 0.23753 A∗µ 48 odd, curved
0.00367 0.23755 A∗µ 96 odd, curved
0.00481 0.23639 U∗µ 192 all
0.00401 0.23728 U∗µ 400 all
0.00381 0.23746 U∗µ 800 all
−0.04798 0.08212 W∗

µ 48 odd, curved
−0.04760 0.08212 W∗

µ 96 odd, curved
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Fig. 1. Eigenvalues of the vorticity equation (4) linearized
at plane Poiseuille flow, equation (41) for p = 1. The circles
were computed using method (34). The dots stem from an
application of method (39) and should be considered as the
correct ones. One must, however, not forget the truncation
errors which occur in all numerical methods based on mode
expansions: All circles and dots below the dashed line are just
numerical garbage. The remark matters since there have been
attempts to attribute physical meaning to that garbage, see
e.g. [14], Figure 4.18 and its discussion on page 219. The eigen-
value with positive real part 0.0038 signals instability. In the
computations, 32 odd and curved Stokes modes according to
Section 4 were included. This explains the tiny difference of
the eigenvalue 0.0038+ 0.2376i as compared to the value given
in the first line of Table 1.

they indicate a stable flow, whereas linear instability pre-
vails for Re > 5 772 [2].

The most conspicious point for a check of accuracy is
thus the unstable eigenflow. The eigenvalue with positive
real part computed by the various methods appears in
Table 1.

The values in the first line, which we take as refer-
ence, were computed by Orszag from the Orr-Sommerfeld
equation using the ordinary stream function [2]. In two
dimensions, Orszag’s approach is equivalent to our (39),
but Orszag used Chebychev polynomials instead of the
functions defined in Section 4. Of the latter ones, we need
48 to reach the same accuracy for which 32 Chebychev
polynomials are sufficient. Therefore Orszag is right: All

functions should be economized by Chebychev polynomi-
als if really big computations take place. This, however,
is a standard procedure which need not to be explained
here.

The values in the second and third lines of Table 1 are
to demonstrate the fast convergence of method (39) based
on the potential modes as test functions. It is in marked
contrast to the method (37) that uses the velocity modes
as the test functions. Notice the slow convergence in the
fourth through sixth lines. Even with 800 (eighthundred!)
modes the eigenvalue is still a tick off from Orszag’s values.
As computational efforts grow with the third power of the
count of the modes, and if we assume that computing
the eigenvalue takes 1 second with (39), it consumes more
than (800/48)3 ≈ 4 630 seconds with (37). A task, which
is nowadays considered a small prelude, becomes a mighty
hardware buster.

The matrix that is defined by the integrals in (37) is
not diagonal because there is no orthogonality between
Uν and Wµ. Therefore that matrix has to be inverted nu-
merically, and the inverse matrix must be multiplied with
the other matrices on the right-hand side of (37), which
adds to the computational needs described in the previous
paragraph. The multiplication of the inverse must also be
blamed for the slow convergence because it mingles low-
and high-frequency contributions.

Moreover, with method (37) two important simplifica-
tions cannot be applied. It was already mentioned in Sec-
tion 5 that orthogonality is missing because curls toggle
parity. The Poiseuille basic flow, equation (41) for p = 1,
is symmetric. Therefore in the linear regime parities are
conserved. It should be sufficient to include in the expan-
sion (43) either even or odd terms only. Yet using the
same test functions in (37) as those used for the expan-
sion, yields only meaningless equations of type 0 = 0. So
even if it is not necessary, we must include both even and
odd functions in (43), which increases the count of modes
by a factor of 2 and the computational effort by a factor
of 8.

A similar argument holds for the flat/curved discrimi-
nation explained in Section 4. If we just search for the most
unstable eigenflow, Squire’s theorem [17] teaches that we
need look only for two-dimensional perturbations. Hence
we may put ky = 0 in (26) and (17), and may omit with
ky = 0 and no ey-contribution all flat modes (25) and (16).
Putting this in other words one may say that the curved
modes span the space needed for the eigenvalue analysis,
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while the flat modes stick out and seem to be irrelevant.
Yet if we set up an expansion (43) with curved modes only,
and use these very same modes as test functions in (37),
again only meaningless equations of type 0 = 0 are gen-
erated. So even if the flat functions drop out in the final
result, we must include both curved and flat functions
in (43).

Altogether we must tug through the computation four
times as many modes as necessary. As 48 modes are nec-
essary with the vector potential method (39), one might
guess that 48×4 = 192 are enough with method (37). But
a further expansion from 192 to more than 800 modes is
necessitated by the frequency mixing due to inversion as
explained above.

The last two lines of Table 1 present results from
method (34) using the vorticity modes as test functions.
For the calculation of the most unstable eigenvalue, odd
and curved modes are sufficient, as with method (39). But
we see that the results are markedly off from the true
values given in the first line, and increasing the count of
modes from 48 and 96 does not help at all.

Here we can figure out the reason by an example. It
demonstrates the general considerations of Section 5. The
y-component of the first vorticity in (28) is:

Wco1 · ey ∝ cos γco1x. (45)

To see the difference between (34) and (39), this should
be compared with the y-component of the vector potential
given in (6) and inserting (24)

Aco1 · ey ∝ cos γco1x−
cos γco1
coshβ

coshβx; (46)

add b̃0 and b̂0 and use equation (32). From the eigenvalue
equation (30) we know that π/2 < γ1 < π. Thus the
vorticity (45) has two zeros in −1 < x < 1 whereas the
vector potential (46) has none!

Using the vorticity test function method (34) produces
the same kind of error as the computation of Fourier co-
efficients by

an = 2
∫ 1

0

cos
(

(n− 1/2)πx
)
f(x) dx, n = 1, 2, 3, . . . ,

(47)

without n = 1. cos(πx/2), possessing no zeros in −1 <
x < 1, proxies the constant term in the more familiar
expansions based on cos(nπx), n = 0, 1, . . . .

This reflects the lack of completeness that was an-
nounced in Section 5.

Another example with an eigenvalue problem that was
solved by very different means is plane Couette flow, equa-
tion (41) with p = 0 [18], namely in terms of Airy func-
tions. We present our results according to the vector po-
tential method (39) in Figure 2 and assert that there is no
sensible difference to the hitherto known ones. However,
a representation as is Figure 2 might be new.

As with Poiseuille flow, (34) yields eigenvalues similar
in structure to Figure 2, but wrong in details. Method (37)
converges again slowly.
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Fig. 2. Eigenvalues of the vorticity equation (4) linearized at
plane Couette flow, equation (41) for p = 0. All values were
computed using the vector potential method (39) and should
be all right. The dots came out when only curved modes, see
Section 4, were included in the expansion (43). The circles in-
dicate all existing eigenvalues. They were obtained including
the flat modes as well. Half of the dots coincide with the cir-
cles. The eigenfunctions are either strongly damped but don’t
propagate at all (λi = 0), or they cling to the right or left wall.
With the definition (42), Reynolds numbers of Couette flows
p = 0 should be comparable with those of Poiseuille flows p = 1
by a factor of 4. For the eigenvalue pattern presented here, it
is rather the factor of 5. We found the correspondence between
Re(p = 0) = 2 000 and Re(p = 1) = 10 000 counting the dots
in the two branches of the fork.

7 Comparison with two famous papers

The vector potential method (39) might look like a rev-
elation from Providence. Yet it is just a straightforward
generalization of a known procedure.

As early as 1958 Dolph and Lewis computed — with
surprising accuracy — the eigenvalues of plane Poiseuille
flow [16]. Their work was based on the Orr-Sommerfeld
equation. Dolph and Lewis expanded the stream func-
tion in terms of what we now call the vector potentials
of Stokes functions, see A of (6) with a and b from Sec-
tion 4, and got an algebraic eigenvalue system by mul-
tiplying the Orr-Sommerfeld equation with the stream-
function modes. Now, the Orr-Sommerfeld equation is
nothing but a linearized vorticity equation, and the stream
function Ψ is nothing but a special vector potential, viz.
A(x, z) = eyΨ(x, z) in the present notation. Others, like
Orszag [2], applied the same method, just with other
modes. But they all seem to have not known how to pro-
ceed for three-dimensional problems since for those they
changed the method.

So the present progress might be considered as general-
izing Dolph’s and Lewis’s procedure to three dimensions.
We have now a uniform theory of incompressible flows,
starting from the theory of complex functions till reach-
ing the general vorticity equation.
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For two dimensions our procedure differs from Dolph’s
and Lewis’s by two technical details: First, as the carrier
field we use ex rather than ey because it eases discrimina-
tion between curved and flat functions. Dolph and Lewis
did not have this problem since from their point of view
the curved functions were enough. Namely, they relied on
Squire’s theorem, admitted two-dimensional disturbances
only, thus put ky = 0 and skipped ey, whence the flat
modes are zero anyway. However, as is to be shown in
Section 8, understanding the flat functions is essential for
understanding the transition to turbulence in Couette and
Poiseuille flows. Second, there is a difference in the nota-
tion. Dolph and Lewis called those modes even which we
call odd , and vice versa. This is because our notion of
symmetry is based on velocities, which are measurable,
whereas Dolph and Lewis argued completely in terms of
stream functions which depend on arbitrary gauging.

It appears as if the gauge variance of the vector poten-
tials may affect the results of method (39). This, however,
is not true since it is possible to rewrite all matrix ele-
ments until they contain only velocities and vorticities.
Proceeding from (39) and operating in the same way as
after equation (9) (multiplying with A∗µ and integrating
by parts) takes (4) into∫

U∗µ · ∂tUd3r =
∫

U∗µ ·U×Wd3r

−Re−1

∫
U∗µ · ∇ ×∇×Ud3r. (48)

Here use was made of Aµ = 0 at the boundaries, which
is a possible choice by proper gauge and which the vector
potentials derived in Section 4 fulfil.

If the velocity modes U∗µ have zero divergence, as
in fact they have, it seems as if one could add on the
right-hand side of (48) a term with pressure and squared
velocity

−
∫

U∗µ · ∇
(
P + U2/2

)
d3r. (49)

Then one recognizes under the integral the whole Navier-
Stokes equation. Going these steps just in reverse, Salwen
and Grosch [19] arrived at (48) and concluded that this
relation was a direct result of the Navier-Stokes equation.
For their purpose, viz. linear analysis, their statement is
correct. Nevertheless, for the full, nonlinear problem, one
must not forget the boundary terms. In the transformation

U∗µ · ∇P = −P ∇ ·U∗µ +∇ ·
(
PU∗µ

)
(50)

the second term on the right-hand side is not safe to con-
tribute nothing. The velocity modes are usually made to
vanish at the boundaries. This is true at the walls, but
they have nonzero values at the open ends of the channel.
If the modes and the pressure are periodic, the contri-
butions from the open ends cancel. Yet this is definitely
wrong for the nonlinear problem because a long-range
pressure drop due to fluctuations is the most prominent
indicator of turbulent flows. We have here one of those

awful incidents where a wrong argument, viz. omitting
boundary remainders in Gauss’s theorem applied to (50),
produces a correct result, viz. (48).

In our theory for the onset of pipe turbulence [20]
and Taylor-Couette flow [21] we first executed almost all
computations following Salwen and Grosch until we dis-
covered that their argument of simply neglecting the pres-
sure contradicts the enhanced resistivity observed at tur-
bulent transitions ([20], Sect. 2.3). Therefore we switched
over to the vorticity equation and the vorticity test func-
tion method (34) and found the previous results but little
changed. Nevertheless, the correct calculations are those
in the style of Salwen and Grosch because they are identi-
cal with an application of the vector potential method (39)
but in proper three-dimensional generalization.

8 Squire’s theorem as a misleader

Another interesting application of the vector potential
method (and of the particular basis developed in the pre-
vious sections) is to understand the importance of three
dimensional flow despite the two dimensional character of
the geometry of various flows in general and of Squire’s
theorem in particular. Squire’s theorem states: In a plane
shear flow, the least damped or the most unstable per-
turbance is two-dimensional [17]. In other words, with the
coordinates introduced in Section 6, the spanwise direc-
tion y can be disregarded. Squire’s theorem applies just
to one eigenvalue and one eigenfunction. Yet it seduces
one to believe that the transition to turbulence must go
through a two-dimensional process. By contrast, near the
onset of turbulence the energy providing disturbances and
those who consume the energy by viscous damping are
three-dimensional flows; see [22] and [23] for more details,
also [24]. One cannot find them if one disregards y, the
third dimension.

As explained in Section 4, we use curved and flat modes
to approximate the flows. The flat modes are needed to
span the third dimension. With particular ease this can
be seen in the limiting cases ky = 0 or kz = 0. In other
words: To return to the customary computations one must
set ky = 0 and omit the flat modes.

What omission or inclusion of the flat modes means for
the eigenvalues, is shown in Figure 2. The dots indicate the
eigenvalues computed without flat modes, whereas inclu-
sion of flat modes produced the circles. Squire’s theorem
is verified since the eigenvalue with the biggest real part
appears as a dot.

To make further use of the numerical power of the
vector potential method we first briefly repeat some no-
tions introduced in [22], see also [23]. We define the quality
modes (q-modes) of the plane shear flows in the same way
as in [22]. That is, we sort the eigenfunctions hν(r) of the
linearised Navier-Stokes equation including the term with
the laminar flow, with decreasing damping, i.e., opposite
to their labeling, to fill a matrix H = [hN , . . . ,h1]. This
matrix is orthogonalized by means of a QR decomposi-
tion H = QR, where R is a right and Q a unitary matrix
whose columns are the q-modes. The q-modes with the
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Fig. 3. Qualities of plane Couette flow at Re = 500, ky = 1.5,
kz = 0.5 without and with flat modes, meaning to discard or to
include the third, spanwise, y-direction. Circles and dots, re-
spectively, discriminate these two cases. The connecting lines
just serve to guide the eye. Altogether 36 modes were taken
into account. For the qualities Qν distinguished by dots, the
maximum Qν = 54 is reached at ν = 33. This value can be
found in Table 2. The relevant disturbances at onset of turbu-
lence are thus three-dimensional.

highest serial number ν are expected to be the best en-
ergy providers. They enjoy small damping, are perpendic-
ular to the viscosity dominated modes, and are strongly
influenced by the convection with the basic laminar flow.
Energy and quality of a mode are defined by

Eν(t) =
1
2

∫
uν(r, t)2d3r with uν(r, 0) = qν(r), (51)

Qν(t) = Eν(t)/Eν(0). (52)

If Qν(t) gets greater than one for t > 0, we call qν(r) a
provider and specify its quality by maxtQν(t); the corre-
sponding time be tmax,ν . However, all other functions, i.e.,
the consumers, have tmax,ν = 0 and Qν(0) = 1.

The qualities of q-modes are displayed in Figures 3
and 4. The wave numbers ky and kz were varied in steps
of 0.5 to find the most powerful providers. The results
of the proper computations, i.e., flat modes included, are
indicated by dots. Roughly, qualities of 100 were found,
i.e., amplification of the amplitudes by a factor of 10. If,
by contrast, the flat modes are omitted and ky set to zero,
the circled results are obtained. There are at most two
providers, and their qualities are less than 10.

It came as a surprise only after systematic search that
the optimal ky is big, whereas the optimal kz is small.

π/ky is the diameter of the rolls. These rolls are limited
in x direction by the walls which have a distance of 2. For
ky ≈ 1.5, π/ky ≈ 2. So ky ≈ 1.5 means just that the most
effective providers and consumers have a nearly circular
cross section and fill the space between the walls in a single
layer.

In a search with step size of 0.5, kz = 0.5 is a border
value. To improve the missing resolution towards longer
streamwise patterns, we studied the quality of the most
powerful provider for a sequence of smaller wave numbers
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Fig. 4. Qualities of plane Poiseuille flow at Re = 1 500,
ky = 2.0, kz = 0.5 without and with flat modes, i.e., for two-
or three-dimensional disturbances. Circles and dots, respec-
tively, discriminate these two cases. The connecting lines just
serve to guide the eye. Altogether 36 modes were taken into
account. For the qualities Qν distinguished by dots, the maxi-
mum Qν = 166 is reached at ν = 35. This value can be found
in Table 2.

Table 2. Maximum qualities of providers in Couette (p = 0)
and Poiseuille (p = 1) flows as they depend on the wave number
kz. For p = 0, the values were obtained with Re = 500 and
ky = 1.5, while for p = 1 we set Re = 1 500 and ky = 2.0.
For these Reynolds numbers, turbulence is already observed.
The values ky = 1.5 and ky = 2.0 were chosen to obtain the
biggest qualities that are possible. For Poiseuille flow (p = 1),
the linearized problems are separable with respect to even and
odd modes, see Section 4. Here the results for the odd modes
are presented, since they provide bigger qualities.

kz Qmax(p = 0) Qmax(p = 1)

1 18 94
1/2 53 190
1/4 95 286
1/8 173 342
1/16 264 378
0 287 400

kz → 0. The results are given in Table 2: Smaller kz give
more quality.

π/kz is the length of the roll in the direction of the
basic flow. Therefore it is expected that lengthy rolls with
circular cross section play the most prominent role in the
transition to turbulence. This agrees with the photographs
published by Dauchot and Daviaud (Figs. 3 and 6 in [12])
and also with the numerical findings by Hamilton et al.
[25]. By the way, the so-called Emmons spots in turbulent
boundary layers also consist of lengthy rolls.

In the case of Couette flow, the values in Table 2 were
obtained for Re = 500 and ky = 1.5, while for Poiseuille
flow we set Re = 1 500 and ky = 2.0.
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Appendix

The orthogonality and completeness of the Stokes modes
as defined in (11) will be proved here. The boundary values
of the velocity modes at the walls are set to zero, but at
the open ends periodic continuation is imposed. We follow
arguments presented by Ladyshenskaja [26].

The basic idea is to apply a well-known theorem on
compact operators: Their eigenfunctions are complete.
Their eigenvalues are countable and, if they accumulate,
they heap at zero [27,28]. The operator in (11) is not com-
pact, but its inverse will turn out to be. This is sufficient
since the inverse operator has the same eigenfunctions,
and the eigenvalues are reciprocal to the original ones.

For the familiar proof of compactness one shows that
the examined operator maps every bounded set of con-
tinuous functions into a bounded set of equicontinuous
functions. According to the theorem by Arselà and Ascoli
a bounded set of equicontinuous functions is compact [27],
page 247.

It is difficult to apply these arguments to the present
problem (11). First we deal with a vector operator.
Equicontinuity in three dimensions is often not a useful
notion. Second the velocity modes must fulfil a constraint,
namely incompressibility. In other words, we must elimi-
nate a Lagrange parameter in (11), i.e., the pressure. Both
difficulties can be mastered elegantly using two tools de-
veloped by L.S. Sobolev.

First equicontinuity is replaced by boundedness in the
Sobolev norm

‖v‖ =
√
‖v‖20 + ‖v‖21, (53)

with

‖v‖0 =
√
〈v|v〉0, 〈v|u〉0 =

∫
G

v∗ · u d3r, (54)

‖v‖1 =
√
〈v|v〉1, 〈v|u〉1 =

∫
G

(∇× v∗) · (∇× u) d3r.

(55)

‖v‖ establishes a Banach space where every bounded set
of velocity fields v is compact. For the Sobolev norm con-
trols the function values and the derivatives, similar to
equicontinuity.

We will need to suppose that the area of solution G
is finite. At a first glance this seems to be an unrealistic
assumption since channels, pipes and similar devices have
open ends. Nevertheless finiteness is granted by periodic
continuation. One may imagine the area as a toroid in four
dimensions.

The equivalence of the norms ‖v‖ and ‖v‖1 =
√
〈v|v〉1

follows from that finiteness. By definition ‖v‖1 ≤ ‖v‖.
Valid, however, is also another inequality

‖v‖ ≤ C‖v‖1, (56)

with some positive constant C. This inequality holds be-
cause ‖v‖1 controls, according to (55), the curl. The diver-
gence is zero anyway. The boundary values are zero and

the area is finite. Hence it follows from the fundamental
theorem of vector analysis that the contribution of the vec-
tor field v to the Sobolev norm is finite and proportional
to the curl.

Sobolev’s second tool helps to cope with the constraint.
The pressure drops out if one replaces the classic prob-
lem (11) by Sobolev’s generalized problem

α2
ν〈t|Uν〉0 = 〈t|Uν〉1 (57)

which must hold for all test functions t with ∇ · t = 0
and the same boundary conditions as for the velocity
modes Uν .

Equation (57) is derived from (11) by multiplying the
latter with t∗ and integrating it over G. Thus it follows
that every classic solution solves the generalized problem
as well. And if the classic solution exists, it is the only
solution since the generalized problem admits but one so-
lution.

The symmetry of the generalized problem (57) is man-
ifest. The eigenfunctions Uν are therefore orthogonal and
the eigenvalues α2

ν are real. Moreover (57) holds also if
t = Uν . Therefore no eigenvalue can be negative.

All what is left is to show that the inverse operator
L−1 of

L = ∇×∇× (58)

is bounded in the Sobolev norm (53). We have from the
inequality (56)

‖u‖2 ≤ C2〈u|u〉1. (59)

By definition (55) and partial integration

〈u|u〉1 = 〈u|Lu〉0. (60)

Further by Schwarz inequality

〈u|Lu〉0 ≤ ‖u‖0 ‖Lu‖0. (61)

Going back to the definition of the Sobolev norm (53)

‖u‖0 ‖Lu‖0 ≤ ‖u‖‖Lu‖0. (62)

Reading all these estimates in one line gives

‖u‖ ≤ C2‖Lu‖0 or ‖L−1v‖ ≤ C2‖v‖0. (63)

In other words, L−1 is compact since it maps all bounded
sets into compact sets.

The reader will notice the similarity of Sobolev’s gener-
alized problem (57) with the integrated formula (48). Both
eliminate a Lagrangian parameter, the pressure, by pro-
jection. Projection methods and the use of vector poten-
tials are related to each other as the method of Lagrangian
parameters with the use of generalized coordinates in el-
ementary mechanics. Solving a problem using generalized
coordinates requires less work and is thus advantageous.
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